

Применение системы для неразрушающей очистки поверхности с помощью химического травления атомарным кислородом

Одним из самых востребованных методов исследований с использованием сканирующего электронного микроскопа (СЭМ) является получение электронных изображений с одновременным определением химического состава объектов образца. Современные спектрометры регистрируют все элементы от бериллия до плутония, однако при решении задач, связанных с анализом углерод-содержащих фаз, возникают определенные трудности. Дело в том, что рабочий режим СЭМ подразумевает создание высокого вакуума в камере образцов, но, несмотря на это, в камере всегда присутствуют остаточные углеводородные молекулы, которые адсорбируются на поверхность образца и полимеризуются под воздействием пучка электронов, образуя углеродные остатки (нагар). Слой нагара, а также, зачастую, наличие жировых или иных органических загрязнений на поверхности образца приводят к тому, что при попытке определения состава углерод-содержащих фаз наблюдается завышение концентрации С.

Например, при изучении образцов медного сплава, содержащего частицы карбида вольфрама (рис. 2), оказалось, что частицы W-C многофазны. Это следует из анализа изображений в отраженных электронах (BSE), на которых, как известно, объекты разного состава имеют разную яркость в градациях серого.

Рис. 1: В данной работе использовался сканирующий электронный микроскоп TESCAN Mira 3 LMU

Отметим, что для визуализации многокомпонентности частиц W-C использован детектор отраженных электронов сцинтилляционного типа, который отличается более высокой чувствительностью по сравнению с традиционно применяемым полупроводниковым BSE-детектором.

Рис. 2: Шлиф медного сплава, содержащего частицы карбида вольфрама. Общий вид (а) и одна из частиц W-C (б)

Для неразрушающей очистки поверхности использовалась установка для плазменной очистки Evactron 25/45. Процесс плазменной очистки состоит из следующих стадий:

- создание радикалов кислорода в низкотемпературной радиочастотной плазме (источник газа — воздух);
- химическое травление радикалами кислорода гидрокарбонатов, содержащихся в камере СЭМ и на образцах;
- в результате окисления гидрокарбонатов образуются летучие молекулы H₂O, CO, CO₂, короткоцепочечные спирты и кетоны;
- летучие молекулы удаляются из камеры системой откачки СЭМ.

Удаление гидрокарбонатов из камеры СЭМ и с поверхности образцов приводит к тому, что спектральный микроанализ углерод-содержащих фаз становится более корректным. В качестве примера в таблице ниже приведены результаты EDS¹анализа трех компонентов частицы W-C, отмеченных на рис. 2б цифрами 1, 2, 3.

Из таблицы видно, что до плазменной очистки

три карбида W-C имели скорее случайные содержания C, а после очистки компоненты 1 и 2 соответствуют фазе WC, а компонент 3 – фазе W_2C , что согласуется с диаграммой состояний W-C (рис. 3).

В данной работе плазменная очистка длилась 17 часов, в том числе и в ночное время. Если использовать очистку регулярно, то ее продолжительность заметно сократится.

До очистки в спектре с медной матрицы наблюдался пик углерода, чье наличие там объясняется только нагаром и загрязнениями поверхности. После плазменной очистки пик углерода уменьшился приблизительно в два раза (рис. 4), но полностью устранить присутствие пика углерода в спектре с металла не удается, прежде всего, по двум причинам: 1) атомы углерода в полимерном окне EDS-спектрометра генерируют фотоны при прохождении регистрируемого излучения сквозь окно; 2) на поверхности большинства металлов формируется стабильный окисленный слой, который препятствует полноценному химическому травлению.

Этап	Структурная состав- ляющая (см. рис. 2б)	% вес ² .			% атомн.		
		С	Cu	W	С	Cu	W
до очистки	1	5,58 ± 0,46	2,15 ± 0,23	92,27 ± 0,50	46,5	3,4	50,2
	2	6,65 ± 0,46	2,03 ± 0,23	91,32 ± 0,49	51,1	3,0	45,9
	3	8,07 ± 0,49	2,32 ± 0,23	89,62 ± 0,52	56,2	3,1	40,8
после	1	5,74 ± 0,45	2,24 ± 0,23	92,02 ± 0,49	47,2	3,5	49,4
очистки	2	5,49 ± 0,46	2,29 ± 0,23	92,21 ± 0,50	46,0	3,6	50,4
	3	3,45 ± 0,43	2,40 ± 0,23	94,15 ± 0,48	34,3	4,5	61,2

Рис. 4 – Наложение двух спектров (фрагмент): желтый – до плазменной очистки, красный – после очистки. Прочие параметры сбора спектров одинаковы

Рис. 3 – Диаграмма состояний W-C. Sara R.V. J.Am. Ceram.Soc., 1965, 48, 5, p.253h

¹ EDS — энергодисперсионный микроанализ. В данной работе использовалась система EDS-анализа AZtec производства Oxford Instruments, оснащенная энергодисперсионным спектрометром X-Max 80

² Погрешности измерений вычисляются автоматически на основе данных о количестве фотонов, зарегистрированных в соответствующем пике спектра